Uy

8
JQ

187 OPYICAL COMERENCE AND PHOTON STATISTICS |

for the conditioned quasiprobability distribution. The fleld ¢ 3 In other wards, has
a Gausslan distribution about the mean value

1
<Ga>a gy B (x4xa)
G (x:x,)

{14. a8}

with a dispersion proportional to G/¥ (xx){1-1g (xx:)1"}, which vanishes
for x; near x; and tends to approach G {XaX:} us x, recedes from X, We shail
examine these expressions mors closely once wa have illustrated the evaluation
of the correlation functions un which they depend.

Lecture Xv ELEMENTARY MODELS OF LIGHT BEAMS

Slnce sur resulta to this point have all been stated in falrly general termas, it
may be of help to discuss an illustrativa example or two. Let ua conslder, 24 a
particularly simple example, a stattonary lght beam which may be thought of as a
plane wave progressing along the positlve y-axis, We shall allow the beam to have
an arbitrary frequency bandwidth, but ghall take it to have a specific polarization
4. The first order correlation functlon for the beam' may then be svaluated asa
sum over plane wave mode functions by means of Eq, (14.13), The index which
labels the mode functions in this case may be taken to k,, the y-component of the
propagation vector. (The other componenta vanish,) Since the values of ky are
dengely distributed, when the gize L, of the quantization volume {g large, the sum
over k, is equivalent to 2 one-dimenalonal integration

.
§ T I

When the mode functions given by Eq. (R 2,0) are substituted in Eq. {14.13) and
the swm is replaced by an integral, we find

ﬁ o)
Gy, Yata) = ﬁ%_{ %?'L?’k exp{ - [k, (y) - y3) -, (ty - ta)1} dk, ,

{15,1)

where GV 15 understood to be a correlation function for the field components in the
direction 8, as in Eg. (4, 21). 'Since the beam contatns no backward travelling
waves, {which would be represented by negative values of ky,) we may write the
Integral equally well as one over the frequency varisble w, = ¢k,. Then if we in-
troduce the parameter

8=t “t:’*%(!’u"yt] {18.2)

to express the space-time interval which oceurs as an argument, we may write

L
{y 1 <> Kw Ly
G Yy, Yaity) * dre { *““"Er-ml- ekt duwy .
The expresalon <n, > Bun, which occurs in the integrand of Eq. (15, 3}, is
the average energy of excitation of the k~th mode. Let us assume, asg an example
that our beam has a apectral profile of the Lorentz form by writing

{15.3)

+

<o > liwy 2y
el? {w ~w°) 7+ 7’ u. {15,4)
p § ¥ 3 i 5 % !
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Here we s the central frequency, ¥ 18 the half-width at half height, and the constant
U is-a measure of the Intensity of the beam, Since the frequency we s typically
much larger than y, only & very small numerical error Is made in the integration
over the spectral porfile if the lower limit w = 0 i Eg. {15.3) 1s replaced by w =
-+, By -making this approximation and letting o' = w ~ wowe find

| "

[

Gty yati) s Ut | e | .,,' dut, {15.5)
i +

The singularities of the function

WS S SUS W U |
wrt 9t 2ipy - iy Wy

are & palr of simple poles lying at 4 Iy in the complex w ~plane, The integral in
Eq. (15.8) can be written as a contour Integral around 4 closed path in the & -plane
in either of two simple ways, depending on the sign of the varfable s. Fors> 0
the contour may be closed by meang of an infinite gemicircle in the upper half
plane (Im w'> 0); for a-< 0 it may be closed by a semicircle in the lower half
plane. Sinee the integrals along both gemicircles vanish, we find by applying the
residue theorem

(15,6)

1

o . 'ﬁ;—-e“”, s> 0
LN R W W } elndu = 20y
e Ay lw-iy- W+ by ] _?'g'i‘;,“er.’ s <.

_ St o {15.7)
The first order correlation function, according to Eq. (15.5), is therefore given
by

~ The Intensity of the field is found by letting Vi=ysandt, = t,. For these

_values of the coordinites, which correspond to g = 0, we have

b

6wty vity) =§U. L (15.9)
Thia 15 the average of the squared magnitude of the complex field E™, It 13 easy
to seq, if we recall the formulae of elementary electrodynamics, that the para-
meter.U 15 equal to the average total of the electrie and magnetic energy densitles
for the field. s i S

The correlation function given by Eq, (15, 8) shows that our light beam exhibits
approximate firat order coherence when its frequancy band width y ts sufticiently
smaill. Thua, when we have

1

5> el = |ty -h-%(h-y.)i, {15.10)

the tactor 8" In Eq, (15.8) may be approxtmated by unity, and the remainder of
the expreasion for the correlation function may be writlen in the appropriate faclor-
ized form. Asan alternative way of discussing first order coherence we nofe that
the normalized form of the correlation function is _

ey e G vat)
{1} t ) = 13 Y2 .
g (yl 1: ¥a 3) iG‘l)(y‘tl! )’zh)(}{ ﬂ{yz tz, yabz }f;

= exp | lwgs ~ yisl]. {1511}
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'.‘I"{:Is function indeed has absoclute magnitude close to unity as long as yls| is suf-

¢ figlently small. =

& good deal of attention has been dirécted experimentaily to the problem of
devaloping Hght aources with narrow line width, In the besi of these sources of
the ordinary gas dischargs or chaotic variety y Is of the order of 10° eyeles per
acécond, In ordinary laboratory sources it is often of order 10" cycles per gecand
or larger. The corresponding ccherence ranges are 30 em. and .3 em. respec-
tively,

Although we have been discussing the way in which manochromaticity may im ply
caherence, it may be worth recalling that it ia not a neceéssary condition even for
first order coherence. The coherence condition only becomes linked to & require-
ment of moncehromaticity when we restriot our congzideration to stationary fields,
a3 we noted in connection with Eq, {7.24), For the case of atallonary laser beams,
the range of first order coherence ig determined by the spectral bandwidth just aa
for ordinary sources. For the cage of gas lasera it {s possible to reduce the band
width ¥ to values of the arder of 16" cysles per second without tog much difficulty,
and It geems possible o achleye frequency stabilization to within about 10 cyclea
per second over brief intervals. The coherence ranges corresponding to these
band widtha are 300 kim, and 36, 000 km. respectively,

Before we can calculate the second and higher order correlating functions tor
our light beam, we must apectly kg statistical nature somewhat further. Tt ig at
this paint that the descriptions of beams generated by natural sources and thage
generated by coherent sources hecome qualitatively different. Let us assume that
our source is of the usual chaotic variety. Then the higher order correlation
tunctions may all be expressed as sums of products of first order.correlation
tunctions, as we have seen in Eq. (14,36, The spectral deusity function of our
plane wave beam, in other words, completely determines the statisticat Properties
of the field. In particular the delayed coincidence rate for counting palrs of photona
ls given by ) . . o

Gy, Yaliy Yaty, yity) = Gm(hil. it} GYyat,, }fztz}*“EGm(yltx,th:)la

= G' My, ¥t G Nyata, yata) {1+ 1g1 0y t,, b)) %}

=i_~;~ u)={1+e*'*"’} \ (15.12)

Tle presence of the term o191 | iy expression shows that he beam can never
Possess second order coherence, Furthermore when wa plol tha goincidence rate
agalnst s 23 4n Fig, 15 we ges that that term constitutes the *hump't on the
Hanbury Brown-Tw.ss correlatior. curve, L e,.the deviation of the curve from the
accidental or backgroundg coincldeace rate. The experimental curve shown eariler

In Fig. 10 corresponas to a turve of the form shown here after the resalution
properties of the counter system have been f{olded in,
2l 2
2|46 %y
J\
0
821ty =ty y)

Figure 15
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dence rate are easily explained in terma of the moments of the Gaussian amplitude
distribution W(§,x) given by Eq. (14.48). To understand the behavior of the
correlation effect for non-vanishing time delays, and to see, for example, why the
effect disappears for |s] » 1/2Y, we may make use of the quasiprobability distri-
butions defined for pairs of values of the lteld amplitude in the last lecture, When
we substitute the values glven by Eqa. (15.8) and (15.11) for the correlation
functlons into the expression (14, 65) for the conditioned quasiprobability function
W(gi1x08a%:), we find
- buanoplal 3
W{E.yiti] &17,8) = — exp {- L8 - &el J
. : %nU(i'*e'z"‘“) %U {1-e -Zrm) f

(15.13)

This function 14 to be interpreted ag the distribution of values of the fleld anmplitude
&3 at yata, when the amplitude is known o take on the value &, at y,t,. When the
parameter g vanishes, the mean radiug of the Gausslan peak of this expression
vanishes and the distribution reduces to the delta function 6'%( £, -§,). As is)
increases from zerc, the mean value of €5, which is given by &, ¢ ob-+isi , de
scribes an exponential spiral in the complex £; -plane white relaxing to the valye
zere. The spiral which corresponds to 8 < 0 ig shown in exaggerated form in

Fig. 16. At the same time the mean squared radiua of the Guusslan peak of the

lrnt‘.‘2

Flgure 18

distribution increases to the asympiotic valuell/2}U. For values of |5} much
greater than 1/y the conditioned distribution {15, 13) relaxes to 2 form centered on
the origin, which is simiply the unconditioned distribution W( 63, yata) given by

Eq. (14,48), - The time 1/y is a relaxation tire for the. field amplitude distributions,
Our knowledge of £ ; ceases ta have much influenca on the distribution of §, for

Isi > 14y, It i not surprising then that for intervals for which {s{ > 1/y the two-
photon colncidence rate; which {s given by -
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g ' .
Gyl be, valay b)) = IW(“‘ Yaby, Eayata) J€. 14 6, 10 £,d' 6

= fw(s Wit WG 1y b 8ayata) | €, 43 & 1% 6,478, ,
{18.14)

seduces to the factorized form
{2
Gyt vtayit) = 3'%y00, yi0) 6051, i),

The tendency toward photen cuincidences is wiped out, in other WO
i b rds, when the
Intervai g =1, ~t, - ¢ ‘{y; - ¥3) becomes large bec:r;uss the field amplides
&1 y,rrt‘;) andha {¥at;) cease to be atatistically correlated,
& see how the full time dependencs of the coincidence rate emerge,
€ 8 from th
Integral {15. 14), we note that when the conditioned distribution functign is given zy
Eq. {15,13), the average value of |, 1* when&, is fixed is

Jwi CivitilSayata) 16,17 6, = L &c1ie e +%m1 -e¥e) (15, 16)

When this expression ls multiplied by { § {* and averaged '
the Gaussian form far W&, yit )}, wa ﬁn:i e S8 I EG. (15.14), over

. a
G‘afyllh yats, Yata, vit;) a(%‘(j) {ge'?ﬂﬂi {l~a"""‘}

X,
=(30) {140}, (15, 17)
which verities the value of the coincidence rate found earlier in

The values we have derived for the corralation functions hmiq:;.ii( i}se.e:zz%r;.sed
on the assumption that the energy spectrum of pur light beam hag the Lorents
shape. The corresponding results are easily derived for other apecira for which
the Fourler transform of the energy distribution {s known. Other simple, smocoth
representations of the prefile of a spectrum line, for example, lead to re‘sﬂts
whicg t:re :-;:alitauvely-aimiiar to those for the Lorentz line. "

€& the photon correlation effect axtends over deiay times of the or

inverse band width, ¥, it might appear that this time canybe stretchedewtdhe; : ‘the
factor of a million or more by using the extremely monochromatic light of tha laser
rather than light from natural g ‘irces, The error In auch reasoning lies in the fact
that the atatistical properties of the lager heam are quite different from those of
the chaotically generated beama we have heen discussing, Lasers, when they ars
operating most monochromatically, generate beams with very Uttl’e amplitude
modulation, and for these, s we have seen ig the last lecture, there woild ba
virtually no photon correlation effect at all, ' '

MODEL FOR IDEAL LASER FIELDS

For {ields generated by chactic aources, knowledge
occupation numbers < n, > ig sufficient to d;ten‘;fne .tie Z;a;g}{yoép?:a::: x:geand
{rom it all of the statistical properties of the tield, However if our source ,is not
;:haotic in natur_e, 3 cannot expect that there will exist any gelf-evident way of
inding the density operator for the Iteld it generates without analyzing the mech-
anism by which it radiates jn some detail, The only reliable method we have of

system-ﬁmﬁer atudy and {o integrate corres

ponding Schridinger equation, oy tv-
alently to solve the equation of motion for the density cperator, These ésslg:i:q:e;ts
are lormidable ones for the case of the laser oscillator and have not been carried
out to date in quantum mechanieal terms, "The greatest part of the di_[ﬂéalty Hes

—
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in the mathematical cqmplicatiuﬁs asgociated with the nonilnearity of the device,

~The nonlinearity plays an essential role in atabilzing the fleld generated by the
“.lager. . It-geemy unlikely, thersfore, thit we shall have a quantum mechanicatly

conatstent plcture of the {requency bandwidth of the laseror of the fluctuations of

_ its output untll further progress is made with these problems.

M we are willing to overlook the noige ard band width prohlems for the moment,
and to confine our discuszlon to the case of an {deally monochromatic laser, then it
ia not difficult to find a representation for the density operator of the beam it gen-
erates. The radiation field is coupled within the lager to the electric dipole vactors
of all of the atoms of the active medium. These atoms have a polarization which
oscillates with the fleld and at the same Hme radiates energy Into it, If we view
the active medium as a whole, we gee that it hag an oscillating polarization denalty
of macroscopic proportions, l.e., all neighboring atoms conlribute similarly to
the total polarization density, If we remember that the time derivative of a polari-
zatlon density 18, in eflect, a current distrbution, then we may think of the field as
being radiated by the oscillating eurrent distribution. When the laser is operating
well above its threshold there iu nothing weak sbout this current distribution; it ta
essentially of clasajcal magnitude, Furthermore, f the laser hag the ideal stabii-
ity we have agsumed, the current simply oscillates steadily in a perfectly pre-
dictable way. We may, in usther words, to an excellent approximation, describa
the bound current In the zctiva medium as a e-number current denygity,

The general preblem of finding the fields radiated by preseribed current
distributions has been solved in Lecture XII. The most important property of the
solution is that radiation by a known current distribution always brings the fleld to
& coherent state {assuming that no other radiation was present tnitially). If the
current ogcillates with a single freguency, only the fleld modes with precisely that
frequency will be excited, -If we assume, lor simplicity, that the geometry of our
gystem favors the excitation of only one mode of the fleld, then tha density operator
for the field may be written In the form

p=la><al, {15.18)
where lq2> s a coherent state for the excited mode, and the amplitude o 18 given
by an integral of the form {12, 20) taken over the bound current distribution,

" Let us write the complex fleld eigenvalue which corresponds to the amplitude
@ &8

5 _ {15.19)
Then, since the density operator (15.18) corresponds to a pure coherent state, the
correlation functions of all orders will facterize to the form of Eg. (8.5),i.e., the
beam will possess full coherence, It follows then that the n-fold delayed coincidence
rates will factorize to the form ‘

T girt) = l(-ii-"-’)i u(r) eg

G (x1ens Xay Xaooo ) -1, ¢xy, 1), (15. 20)

and no photon coincldence correlations of any order will be detectable in the ideal
lager beam. '

The argument which led to the density operator (15.18) far the laser beam
assumed that the oscillating current distribution is known precisely i, e,, that we
know its phase of aseillation a5 well ag Its amplitude. In practice our knowledge
about quantities which oscillate at extremely high frequencies rarely includea any
tnformation about their shsolute phase, - (This is due more to the absence of a
suitable clock to-use as a reference standard than it is io any ditficulty of principle

in defining or measuring the phase of essentially classical quantities such as the
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bound current in ihe Iaser.) When we lack an
ou ) % ¥ knowledgs of the phass of ia~
;;S;; j{;f;, ;th:dczzrrent,f gxe d(e;z;sty)oper:ata#_shouid be written in an aipmpz=iaf;; ila
peclalized form of Eq, <30} It ig ciear that thig forim is simp
: ] the expr
(15. B} for the densgity operater averaged over the phase of the cmfnglex anf;?iifusdseim

iy

p= i iaiem><¥aie“’22§
a 2."
1
& f—ermjc:[ 6{181 - ja ) i8> <g ld'g, _ (15, 21)

These forms of the density operatoy de
Pend on g only throygh its absel
value, and hence répresent stationary fields, They represent rfixed rathe: tt‘:uan
pure states of the fieid, but ag we have noted in the last lecture, mixtures corre-
sponding to avgraging an overall phaga varlable do not alter the eoherence pro-
ng‘-:ﬁi cfu: :hetr;xel:. I:(is €23y to verify that the carrelation functions which are
m the deng ; |
(Tomed. Y nsity operator {15, 21} are identipal to those which follow from
The explicit construction of the dansit
¥ operator for an idea] | :
shows that no photon correlations are to be detected in such a bea;s.er’ll‘)tf:rreason
'_frohr the absence ?IAsuch correlations jg evident from the analysig of the lagt lecture
e quaslpmhahzl;tylfunctic?n W(g, ) which corresponds to the stationary dengit .
Gperator (15,21) ig immediately seen {rom Eqs. {14.44) and {15,19) to be Y

i - .
W(g,x) = — 5 L fw H
2”(?},““)“ U1 -(3) *lu(riay), (15,22)

This lunetion vanishes everywhere in the co
vani: mplex §-plang exce onaci
::gd?j}ﬁ iunftzt:ﬂ» 15 singular, 4 deacribes 3 fielg which underggtea no mnl;:lii:uﬁgere
atlon u + And that is the basie re
tons in an Lgeey o bear Asen for the absence of photen correia -
It is alse possible, by makin
. : £ use of the correspondence prines
o;;i'gm of t!.m: prop;arty of Coherently radiateq beams morg dirfctly pl\’?e ;c;l;iiesti?;
Plily our picture of the laser by regarding it gim " )
ply as ag osciflating charge dig-
teibution which radiates much ag ap ante 5 .
3 nna does, The charge we
only a single mode of vibration whoge amplitude ig, in eﬂ’ect,g t’hai aﬁazﬁi’mﬁ:

tiedd to a coherent state, lI,_ un the other hand, we look at the aicillator from 5

inmeg 1rg'y. step by step, passing th rough states with quantum numbers 5, g - i
States 1e ;f:f;i nt ?:_I. The lien}gth ¢f time the gsclllator spends in nach.ot theée
: uied e ponential ¥ aw, sincen ig o large, th o
the states de not vary gimmif ' o et etimes o
gniticantly from one state to.the next Esch t
accompanicd by the emissiin of a phatag W er ot surpriny - on 18
. W4 are therefore not gyprpyi d
that when the photons are detected by en theis e
: ¥ 4 counter, the intervalg between their -
;?Tis;yee L:X;;:-:iif “‘mcei? a:'e e:;‘panenlially distributed, 'I‘hia'exponentiai disirl;:ﬁon
S indicates the absence of any tendency toward pajp ar'h
: ; 1 i
correlations, It i8 the chara_cterm_tic',di_gtrihntmn for the mtergals befﬁreg:: iog:;’l;r

- a
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3

uncorrefated events which happc-_n at & fixed average rate. it is ciear that where two
OF mare counters are used there will be no tima-dependent correlationg of their
ouiputs, :

MODEL OF A LASER FIELD WITH FINITE RANDWIDTH

" An acutal laser beam, in contrast to the ideal variety we have just discussed,
will never he precisaly monochromatio, ks frequency is bound to VATY more or
less randomly. over a narrow range due to disturbances which have their origin
bath inside and outside the laser itself, We ghall construct a slinple mudel of
2 lager field with finite frequency bandwidth by assuming that the mechanicsm )
which disturbs the lager is essentially stochastic s nature. )

Let us assume, for simplicity, that the laser excites anly a single mode of
the electromagnetic field which has Irequency wa, ‘Then the fleld Hamiltonian for
that mode iz

Ha " ﬁUnRTa

and, inthe absence of any perturbing hiﬂuences, the time~dependent operators
a(t} and 'afit} are given in terms of the time-independent ones, a and a'f, by

: = -Hus b
a(t) =a e _ (15,23)
affy =al e e
The completely harmonic behavior of the osclilating field will be perturbed Ly
various Interactions of the field with other systems. We shall assume that the
effect of these Interactions can be represented by the addition of a term to the field
Hamiltonian which depends on one or more random functions of time, i{t)., i we

write this stochastic addition to the Hamiltonian ag H, (t}, the lotal field Hamilton-
tan becomes

H=Ho + He (1), {15.24)

To see the influence of the stochastic term most clearly we shall solve the
Schrédinger equation in the interaction representation, The interaction Hamilton-

lan I8 then
Hi () = o5 Hiy o B ' (15, 25)
We define the unitary operator U, {t, £} as the solution of the Schrédinger equation
L5 35 U (8, 0) = 1y () U (e, 1) (15. 26
which obeys the initial condition
Us {1, 0} =1, {15.27)

Then, If we write the state vector of the field at time t a5 jt >, we see that it
evolves aecording to the transformation

=00, ) 10>,

The equation of motion for the density operator in the interaction represeéntation,
which we ghall write as p(t}, is o

LR PO =AY, RO P S (15.28)
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The solutioh {or the tima development of the density operator may be written in
terms of the unitary operator U, as : ‘ :
At = U (L, t)p (0] U P, v), (15.28)

The expressions for the field correlation functions which we have discussed
earlier in these lectures have all been constructed according to Helsenberg picture
of quantum mechanics in which the state vectors and the density operator are in-
dependent of time. When these vary with time, as in the interaction rapregentation,
the expectation values we require must be constructed somewhst differently, The
required expressions can be found by starting with the form the txpectation values
t-ke tn the Helserberg representation and carrying out the ynitar- transformation
to the interaction representation.

Let us consider ‘wo arbitrary uperators which take the tir.e~dependent forms
L{t; and M(£} in the Helgsenberg representation. An example of the kind of
slatistical average whichisusedin the construction of the correiation functions is
the averaged product which may be written as S L{M(t') > . The subscript
on the average means that it |g coriputed for a particular behavior of the random
funciion £(t) on which the stochastic Hamiltonlan dependens, - The average, when
evaluated In the Helsenberg repreaentation, - is clearly

SLOM)S = Tr{L{tM(1)p} {15,30)
where p 1s the time-independent Helsenberg density operator,

One of the ways of defining the Heisenberg representation (which is unitarily
equivalent to all other ways) ig lo let the fixed Helaenberg state vector for the
system be identical to the state vector in the interaction representation at a
particular thme ty, Then the relation '

e UL, &) (> {15,31)

expresses the unitary transformation from Helsenberg states jto>to states tt>1n

the interaction representation. The corresponding transformations of the aperators
L, M and p are : )

Lild = U,(t, to) BLO UL, b

Mit) = Ue(t, ) Mt} U7, t0) (15.32)
pl(t) mU‘(tl &9) Y Ufﬂl(tj tﬁ). )

where the gubscripts | denots the forma of the operators In the Interaction repre~

sentation, When the inverted forms of these relations are used to express the

operators in Eq, { 15, 30) we find

SLAG M) >0 = Tilu e, t) Ly () UL, to) USHE, to) M, (1) x

fe 3 (t‘) U (t', tu)} B {13, 33
Slnce the time displacement operator U obeys the multiplication law
U‘(tb tl) U‘ (t‘; tﬂ) 2Ul£t| Eﬂ}p (15.34)

the expression for the average may be reduced to the form

SLIOMUt) >0 = Tr{L, (U (t, €)M (8)p, (1)UL, #)} . (16.3%)

BoLGLABER gy

The otcurrences of the operator U, in this expression evidently take into account
(the effect of the disturbance of the field during the tntérval from tf to t. . The dig-
turbance, we arae asguming, s a random one and the average {15.35) has been
evaluated for some particuiar way in which it may behave, L e., it Is evaluated for
a particular random function f{t). Before the Average can be compared with ex-
periments it must again be averaged over a guitabls ensemble of random funcilons
£(t}. The latter averaging process is simplified by our use of the Interaction
representation,

Sines the products LM which Interest ug are in aermaliy ordered form it will
be extremely convenient to make use of tha P-repregentation for the deneity apara-
tor. We ghall therefore only consider the clasa of stochzstic Hamiltonizng which
preserve the nossibility of expressing the density operator by means of the P-rep-
resentation. We agsume, in other waords, that g1 {t) may bo written iy the form

Pty = [Plo, H1a> <ald'a

at all times ¢, . .
It the density operator at time p corresponds to the pure co&ereint state g >,

(15.38)

Le.
Pt = la><al, L s
then, accarding to Eq. (15.29), at time t 4t will be
P8 = Udlt, 1) oy (8) Ui, 1)
= Ur(t, t) fa> <alU/ (1, v), L (15

Now, according to Eq. (15,38}, this operator too will have a P-r.ep;:‘eaentatlon for
which we may introduce the special notation - ' .

240 = [P(at'igt) 18> <pid®p . oot

The function P(at'] pt) 1s evidently a conditioned quasiprobability function, It
corresponds in the classical limit to a probabllity distributton for the complex amp-
litude 2 at time t, when we are glven the knowledge that it had {or will have) the
value & at time b,

To Itlustrate the use of these relations In evaluating statisticat averages, let
ug consider the average of the product at( t} a(l') which occury in the iirst order
correlation functlon, If we aubstitute L{t) = a’(t} and M(1) = a(t) into Eq. (185, 35)
we find, by using Eq. {15,23)

{15, 139)

<al(Bag) > = Te{ale " y (1, 0)a e o (U (L, 1)), (15.40)

Next we make use of Eq. (15.38) for the density operator, and the fact that la >
i8 an elgenstate of a to write

<al(ha(e) >0 = Tr{u. gy, )/ Plat) ale>< ald ol (1, v)al}q Mot

(15, 41)

The unitary transformation inside the b‘x":'wkets may now be carried out by using Eq.
(15. 39} to represent the density operator Indicated in Eq. (15.38). we then have

<at€t) a(t) > = Tr{f Plct') aPlat !ﬁt) 18 ><ﬂ|ﬁ*d2ada;3}e wglt-r)
' (15.42)
= [Pt Plat' | p)ag' da g ool .
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. | '.}'ressl'sn for the average bears a cloge resemblance {0 forms which (1 by a phase factop. There 13 evidently 50 amplitude moduiation s thls meded at syt
The latter ex g n - . -
oceur in the classical theary of continuana Markalf processes. We must now re- When we use Eg, 15, 48) to construct the density operator represented by
member that thie average we have constructed corresponds ko some particular

com ; ; Bas. (15.38) and'(£5: 3) we fing
behavior of the random Hamiltonian, The quantity o be compared with £xperiment

is not any one such value, bulihe average of all such values taken aver a suifable | . lae'w"'._’><’ ce oti)) fP( at 1) 18> <pids. (15, 50)
ensembie of random functlons Ht}. We may write this average as ' e
. P duginer) 15, 43) from which we 2ee that we may take the cenditioned Quasiprobabiipty densily to be
< a?(z)a{t') > ‘f< Plat) Plat it > a0 dad fe s slmply the delta function
aver | )
ng equations furnish us with a fairly general irmework.for dig~ & Plat1gt) = 6”’{;3 ~qe-wn . _—
cuss;];ezfxoer?ngfg};eicg of random disturbances ap the oscillations of the field, \»;!e i T
shall now uge thig formalism I constructing 4 simple model of g laser beam o \ If we Introduce the phases of the amplitude 2204 2 via the dettnitions
idth,

ﬁm‘est?x?:l(;wt!fghs implest way to gi ¢ the oscillating mode of the field finite fre-w . a=lale " (15,52
quency. bandwidth is to assume thae its frequency is a ram_lom function of Lime, We i | | et |
may do this by writing the tota} fisld Hamillontan of Bq. (15. 24) as . | | | ,

| | o : then the two-dimiensionat delta function (15,51} can be written in terms of 3 product

Hetifwe + (1)) ala (15, 44) _ g et on (15 |

of two nne—dimen_sioaai ones ag

where () is 4 random function of some sort whose ensemble average, <f{t}>, o Platt}gtj = T%T 8181 ~.1al) a(o - B+ i), {15.83)

ishes, ; S o _ e
van sSa'nce the random Hamiltonian iz evidently . ! This function describes the evolutiog of the state of the field from the coherent

‘ 5 state [ > at time ¢, when we are Elven any. partieular randon function . 1o
He{t) =Ki t}aTa, (15, 45) 4 find the state a¢ time € which ig typical of the get of posgibje random functions, we
{ . ¢
and it commutes with H, = hiwala) the interaction Hamiltontan according to Eq. must average Eq. (15. 53) over the ensemble of functiong f{1).  We may write this
average : . : e :
(15.25) is simply H, isell. 28 tai; e form verage ag . 1 SR :
; . i takes .
The Schradinger equation (15, 26) the Py, (ot ot = Tor OB~ laf<ags - Bo+ B(tr)> over 1 (185, 54)
&‘ LU ) s natav, gy, 1), (15.48) : : '

: i Now, if we recait that the function 8{8) has the Fourler serieq expansion
its solution is simply an exponentizl funetion which may be written in the form : _

. ]
. I :
8(8) = =~ e
Ug(t, t1) = g-talae) (15..47) { (8) 2x “Z% s {15, 58)
where ¢ is defined by [ We see that the veraged delta function in Eq. {15, 54) may be wriiten ag
' 1 B0} - ot f ey e
sy = [ (eryae, (15.48) 8(8) = 5 z,_.-.," T<e —
{15, 58)
To see the effect of the tranaformatk:ntli, tm> t::s :Lt:li;eﬁ of ';tll:a :i::dt,ml]it tu?he i We must clearly specuy_ some of the properties of the random functions 1(t} before
FUPpose that the fleld is in the coherant stata la . the exponential functions jn Eq. {15,58) can be averaged over them,
state will be . ‘The different physical procegses which may perturg the frequency of gurp {ield
) oscillator require in general that we digseugy various kinds of random functions
1> = Uslt, t)la> : f{t). For the Present, however, we shall only consider one of the simpler types
sty . i of random functions.  'We shall assurme thay Kty iga stationary Gaussiag stochastic
= pite o

process, {.e., that at ay time't the ensemble of values of (1} has a fixeq Gauzsiag

PR TIE JR, ‘5'-1 £y ‘/(ni)é}gn > ! tistribution, Thep It is not gifficult o show that the averaged exponentialg ip Eq,

(15,43 X (15, 56) zre given by
. =g t 1 a t .t
- e's"”a Z‘ (gnl—}' el | n < exp{ imJ:. I{t")dt"} P oay o= exp i* m _[ﬁf"
) aver | {15. 57)
= fgg o0y N, : ST T {INTN divdpr]
The particular random Hamiltonlan we have assumed just transforms one coherent where the ensemblé averaps < Htnje(pry S gy simply the auto-gorrelatlon funckion
st.te into ancther fo which the Amplitude parameter differg from the original one of the random process e

| Let us assume, simply ag an 'i'uuhtra'tioﬁ, that the function 1{t) fluctuatss so
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rapidly that is autocorrelation function can be taken to have the form

LY ETS = 2‘:5(5" - ey {15, 58)

where § Is a positive constant, Then the averaged exponential in Eq.{15. 57) re-
duces lo

<exp{imf iy aer} > a . =exp{ -migpt - v}, {15.59)
1t vy
and the averaged delta function in Eq. {15, 56) becomes
CO(0 - ar p(te))> 2 = b T o tmtaag-mitier] (15, 60)
awer - Fp o ko

H is interesting to note that this function is stinply the Green's function of the
partial diflerential equation for the diffusion of heat on a circular ring, i.e. , it
satislies the equation

2 22)< 60 - o +9) >, = 0
{5p- apt S0 - Bt d) >,
for £ > ¢ and reduces to 6(8 - 6o} for L= &, It i3 clear then that the conditioned

juasiprobability function (15, 54), which we may write as

1
Intal

{15.61)

=
) — - b sast, }-m:tll-l'i
Pav (at1t) = U181 - lal )T e
describes a kind of random phase modulation in which the phase variable § = arg 8
"diffuses" away frutn ils initial vilue, g, . _

The reciprocal of *he diffusion constant [ defines a relaxation time for the
phase variable. For time intervals t - t* which greatly exceed 1/¢ the distribution
{15.61) reduces to a constant, cireularly symmetric form; the phase § becomes
completely random,

Let us now reiurn to the question of evaluating the first order correlation
function for the field, According to Eq. (15. 43) we may construct the function as
s00n as we have evaluated the average '

<Pla, t')P{at'} pt) >*a.: . {15.62)
We shall agsume that we have no knowledge of the initfal phase of cscillation of the
fleld. Since the random perturbation of the field only shifts its phase, the phase
remalns uniformly distributed at all times; i. 6., we never know more about the
phase than we did inttially, The density operator which repressnts the fleld is
therefore stationary. The function P(a, t} inEq, (15 3€) depends on o only
through its absolute value and is independent of t, and of the behavior of the fupction
f{t) as well. In this most frequently occurring case, the functton P{qa, ') may be
written as P{la}) and removed from the averaging brackets in the expreasion
{15.62). That expression then reduces to the form

p(lﬂ") p“(af.’llﬂt) 1 {15.63}
where the second factor is given by Eq. {185. 61).
Now it is evident from Eq. {15. 61} that -

1

w T
] ¥ 2 = - i ) = E
Jeutar o0 gdtp=gie [ oipr - taniprais f o

Ze lm(ei-au}..m:l(n,(.l do

=lgle ettt o ¥ it (15.64)

- -

b —p——— e e 4

-uct of the form us(r) uf .
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On suhatftn'.ztfng_ the expression {18, 83} into the correlation function (5. 43) and
making use of the integral just evaluated we find

<al(a()> = [P(1al) 1al*d a e “utr)-gir:

=<lof %> e tattrianeer (15.85)
where the symbol <)a]* > has heen used for the mean squared anplitude of exeita-
ticn, or equivalently the average number of photons In the mode, . i

If we assume that the mode function u{r} for the field does not change ag a
result of the parturbation, then the full space-iime dependence of the first order
correlation function may be found by multiplying the expression { 15. 65) by a prod-
According to Eq. (R 10. 17}, which {5 a quanium
mechanical {form of the Wiener-Khintchine theorem, the energy spectrum of the
fleld will be porportional to the Fourler transform of the correlation function
{15, 65} . When we calculate the transform wa {ind

o3 . L]
§ <al(ojaqe)> errge 2 <lajts [ ghewgr-uer g,

- 8 - '

2
(W=}t + 3

_ {15.66)
= <{jaf*>

Our phase diffusion model thug has an energy spectrum of Lorentzian shape, and
the diffusion conatant ¢ ig its half-width.

From a spectroscopic standpoint, the field we are describing could not be
distinguished from the chaotically generated Hold of Lorentzian Hne shape which we
discussed earller, if we happened to have £ = y. The fundamentally different nature
of these two flelds 15 best expressed by means of their higher order corraiation
functions.. These tunctions may be evaluated for the phase diffugion model through
simple extensions of the methods we have developed, but we shall not do so here,
Ore fatriy obyious result, however, is worth mentioning, ' Since the random phase

“modulation we have described carries no amplitude modulation with it, it will not

introduce any photon coincidence correlations.

There are a number of ways in which the simple phase diffusion model which we
have presented ag an iNustration can be generalized and made mare realistic, We
may &astly remove, for exampls, the assumption that the stochastic process ((t)
has a vanishingly tmall relaxation time. PFurtharmore we may consider other types
of stochaatic processes than Gauastan one. - Finally, we may congider other forms
of the random Hamiltonlan than {15. 45) and attempt in that way to account for some
of the effects of random amplitude modulation. as well as phase modulation.

INTERFERENCE
OF INDEPENDENT LIGHT BEAMS

One of the questions having to do with coherence which has given rise to much

discussion and a certain amount of confugion recently la that of interference between

Independent Hght beams. That such interference phenomena can exist should come
43 no great surprise; they have been vhserved long ago with radio waves of fixed
frequency, If we have had to wait until recently ! to see such phenomena at opti-
cal frequencies, the delay has heen wholly due to instrumental ditficulties,

The problems which have arisen In the discussion of thege inter{erence phe-
fiomena coficern the pracise way . in which they should be understaod and described.
It would be quite difficult to gay how much of the misunderstanding we have Riefi~
tioned is simply semantic in nature and how much 18 more deeply conceptusl. There

£
e
v
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i sy for exampls, nothing Intrinsically quantum mechanical about the interference

of Independent beams, Yet the fact that altogather different seta of quanta must
domehow interfere with one another geams o have contribuied gréatly to the con-
Susion, We shall not recpust the history of thia subjeét here but ehatl anly discusa

o a few of the simplest possible examplas of the interference phenomenon,

The simplest sort of experimental arrangement we can have i essentially
that iilusirated in Fig. 17. Two independent laser sources {or possibly other
types of sources), L, and L, praject their beams in directions which are nearly
parallel, but glightly convergent, The beams fall upon overlapping areas of 3
sereen L. If the light intensities are high entugh, or we have sufficlent time
avaliable to record over a long period, we may let our detector he a-photographic
Him {n the plane 5. If the conditions do not favor photography, on the other'hand,
we might use a mosale of photon counters in the plans L. TIn aliher case we will
lodk for interference fringes in the arag of overlap of the beams. ’

z

81 Figure 17

Let us assume that the way in which each Hght source excites the fleld can be
described in the P-representation by means of functions P, ( {ay, 1) and Py fon ).
The single P-function which descrihes the superposed fields is thep given, accord-
ing to Fq. (R7.18) or (Re. 15), by

Pllac)) = [P lmn P ([ en l)gc"’(ak ~ o - end d s @

(18, 1)
The average intensity of the superpased fields at any Bpace-time point x ig given
by the first erder correlation function

6" = Settad)] e tx, tah)]’ nda (16.3)

= [Piand) Potlan ) letx, law +an D [ N auwd? e

In reachirg the serond of these expreasicnz we have made uae of Eg, (18, 1} and
have carried out the Integrations over the varianles {a}. Now let us note that the
elgenvalue fleld § (x, {a}) depends linearly upon the amplitudes o 7o that we
have

&ix, [m.+aza!}¢€{&ima“+ 6{x, {anl}, {16.3)

a statement which corresponds to the classical supeTposition principle. If we
auhstitute this relation in Eq. (18.2), and let the symbols 16", %) |, with

i# 1 2 bethe intensities which would be produced by either source in the absence
of the other, then we may write the total intensity ag
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GMx 1) = (6%, ), . {61 %, 01, (1d.4)
+ me{ﬁ’x(f ﬂ'u;} & f(xl_ﬂ'u} ) ?daﬂlifpz'{ f C!zxj } Gfx {G’zkj‘} t‘: dzﬂf‘n} .

The third term of thisg gum ls evidently an Interference term. We must next ask
when it contributes to the chserved intensities and when it does nof.

We have noted in Section VI of the reprinted paper that any lght beam described
in the P-representation can be regarded as the auperposition of two flelds, one of
which corresponds to a pure coherent state and the other of which iz of the unphased
form, i,e., it has vanishing expectation value for the complex fleld strength, When
each of the tielda generated by the two sources 1s analyzed in thig way, It heeomes
elear that the unphased components of the tields will not contribute tp the Inter-
ference term in Eq. {16.4). The interferance term will, in fact, vanish completely
unless the field generated by each of the two sources hag a non-zero coherent
component, = . : -

The moat elementary kind of axample in which the Interference term is different
from zero is one In which the two sources acting separately bring the field to
coherent gtates represented by . ’

_ Pt(:iﬂu”-‘i]ﬁ‘.n(ﬂu; Bus) | .
- I’:Hﬂzx}); qﬁm(azr Bax) . N {18.5)
Then the interference term of Eq. {16.4} reduces to
2Rel €7 (x, {pu}) 6(x, (pu]) ).
The analysis of this term may be gimplified by asguming that the twc‘; s;urces

are Ideal lagsers which are similar In construction and that each exciles only a
single plane wave mode, Tha two plane wave modes are then not identical since

(16,6}

- their propagation vectors are not quite parallel, but they have the same frequency,

Under thess conditions ft ig easy to ee that the interference term {16.6} describes
stationary intensity fringes which are seen on the screen in the area In which Lhe
two beams overlap. The fringes are perpendicular to the plane wilch containg the
two propagation vectors and may be made narrow or broad by making the angte
between the bears large or small, : '

1.et un suppoge {hat the singla mode excited by source 1 has amptitude 8, and
that exclied by souirce 2 hag amplitude f;. Than, since the plane wave mode fune-
tionm are intrinsicaily complex, it is elear that the position of the fringe system on
the sereen I {1 g, y Its diaplacement In the direction perpendicular to the fringes)
will depend on tha phase differsnce of the complsx amplitudes g, and Ba. If the
geametry of the experiment g sufficiently weli determined, then by observing the
fringe system we may measure the phase difference,

No difffeulty of principle stands in the way of our actually carrying out ex~
periments of the type we have just desceribed with twa lager beams. But in practice
We never have the complete knowledge of the excitaiion amplltudes which we asaum -
#d, for example, in canstructing Egs. {18,5) and {16.8}. As we have remarked
many {imea earlier, we are almost always lacking knowledge of overal) phase
parametera. As long ag this is so we do not know the phases of oscillation of our
lasers, and the.onty wiy we can honestly represent the density aperators for the
modes they exclte ig by means of the functions

'P!‘Ql) =‘§‘ﬁ%‘—r ﬁfla,l*iﬁn_li (16.7)

for {=1, 2. These functions represent the siationar-y density operators which are




i
1
|
i
i

| OPTICAL COBERENCE AND PHOTON STATISTICS

' 'ci’_btaiﬁ_éct, as in Eq'. (15.21}, Ey averaging the coherent states over phase. But the

P-funetiona {16. 7} are of the unphased variety; they correspond to vanishing aver-
aged domplex fields, When the descriptions of our two sources are stationary, in
other words, the interference term in Eq, (18.4) vanishes jdentically,

If this result is taken to mean that thare are no fringes to be seen on the
screen, then our lgnorance of the phase parameters has somehow wiped out a
large scale physical phenomenon. To bring the paradox of such 2 conclusion Into
sharper focus it Is possibie to argue that each of our laser sources is esgentially
classical in nature and really has a well defined phage of oscillation. Congeguently
the {ringes should be visible on the screen both to peopie who 4o and who don'l
know the phases alike,

To see that we have not really encountared any fundamental dilemma we must
recall that density operators are conptructed for the purpose of describing ey-
sembles of quantum mechanical experiments, The need to repeat experimsnts
upon many similarly prepared systems arises {or reasons which are qulte baglc
to quantum mechanies, The quantities measured in general fluctuate unpredictably
from ane system to another, even when all the systems are prepared In procisely
the same quantum state, -When the quantum state isalf is random there is still 2
further reason for carrying out experiments on a large number of aystems and
averaging their results, }

Thé two P-functions given by Eq. (18, 5) represent, for example, pure states
of the fleld, In any single experiment carrisd out with two sources for which all
the excitation amplitudes and phases are known, we would probably detect a more-
or-less noisy form of the interferenca pattern we huve been discussing. The Inter-
ference pattern would assume the smooth form glven by Eq. (18.8) only after we
had averaged over many experiments performed with identically prepared sources.

Now when we have no knowledge of the phasea of oscillation of our two laser
gsources, our formalism deseribes an ensemble of exparimeants In which the phases
are allowed to be completely random. It is true that the contribution of the Inter-
ference sifect 1 the average intensity for this ensemble vanishes. But one can
not cenclude [ram the vanishiag of the ensemble average that the fringes do not
show up In the individual experlments, This experiment s one in which the mam-
bers of the ensemble are inc ividually quite unlike their ensemble average, Each of
the experimercs will exhibit 2 atationary fringe pattern on the screen, just as when
the oselllation phi ses are known, Bul since the phases are random, the displace-
ment of the pattern will vary randomly {rom one experiment i the next, It is the
averaging over the random dispiacement which wipes away the fringes In the en~
semble average,

A question we might now ask is how we can use the denaity operator formal-
Ism at all to make atatistical statements about the fringe pattern. When the
sources are stationary ithas appeared to tefl usg nathing but that the ensemble
average of the interference intensity vanishes at every point on the screen. Let us
imagine that we are performing the expsriment with 2 pair of lasers chosen from
our random phase ensemble. To detarmine that there is'indeed an interference
pattern on the screen we muat measure the intensity at @ considerable number of
polnts on the screen. We do not prepare the gystem anew for each of thege me~
surements; they are carried out for a single preparation of the lagera., Now just
the Iirst of the intensity measurements at a known point on the screen znes & long
way toward determining the phase difference of the two lagers, It determines a
linear combination of the gine and cosine of the phase difference of the amplitudes
8 and B which restricts the phage difference to either of two discrete values,
Measurment of the intensity at another point then determines the phase difference,

Once we have used intensity measurements at a couple of points to determine
the phase difference we can predict the appearance of the rest of the Interference
patiern inan ensemble average sense. Of course the ensemble in this case is no
longer the ane we began with, though it still remaing a stationary one. Qur initial

et s e e,
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Intensity measurements furnlsh ug with information which requires that we redy
the ‘slze of our initial engembie by retatning only those experiments In which the
phasge difference {3 found to be nearly the same, This reduced ensemble will be
described by a stationary density operator since a phase factor commaon to the
amplitudes g, and g of a palr of dégenerate modes remains compiately randem
Let us suppose that we find the phase difference of the two beama to be

arg By - arg f = A, {18,

‘Then the selection process by which we. reduce the ensemble lu one appropriaie
experiments for fixed 8 ean he represented by Inserting a factor

1
7y Slarg a, - arg oy - ) ‘ . (18,

into the integrand of the P-fupction (16.1), Once we have located the fringe pat
tern by experimentaily determing itg unpredictable positlon, we have no difficull

in eonstructing a stationary density operater which predicts the average intensii

. In the pattern,

“The tdea of reducing the size of our ensemble to re.ﬂeqt the acquisition of

knowledge about a system should not be too unfamitiar, . In any multi-atep gam

" chance, for example, the odds for winning, which one hopes are even Inftially,

change as one completes each move, The initial odds are calculated by using th
complete ensemble of poasible games, bul the odds calculaled at the later states
use only the reduced ensembles appropriate to the information whick was reveal
by the earller moves, _

Another sense, though a Father dilferent one,” in which the use of the statlon

. density operator farnigheg information about the randomly placed interference

pattern may be seen by discussing the second order correlation function, Ttise
to show that the two-fold coincidence counting rate

Gt e, £t ) = [Pa D6 (i 1) 171 (st o 1) 17 0 d e
{16,

contains a term which oscillates as a function of the positions r and 1 on the scr
This typs of interference term may be derived by means of essentially the samae
argument as we used In discussing the intensity interference experiments In
Lecture IL. - The ogeillation of the Intenaity correlation function must evidently
flect ogcillation of the intensity itgelf, Furthermore since the unknown phase
angles of 8, and g, cancel out of the gecond order correlation function nothing

" need be known about them to calculate it, .

. However a simple measurement of the intensity of a random fringe pattern
{e.g.; by examining a photograph) 1s not the same as a measurement of G‘”, ar

- there. is no simple way of cancluding in general from a knpwledge of G'® what th
- Intensity pattern of the random fringe system should be, .Thus, while G'¥ and 11
" other even order correlation functlons are useful in their own right, they offer n

alternative way of discussing the fringe intensities. H we want the intensities w
must derive them from the denalty Ciwsators for appropriately reduced ensembl
--We have assumed to thig point that our light sources are ideal noisa-(ree la

. ‘We now.ask whai happens when the random modulation of the devices is taken int

aceount. . Since. the most tmportant of the parameters in delerming the two-bean
interference pattern ia the phase of oscillation of the laser, we can secure a goo
idea of what goes on by using the phase diffusion maodel to represent the laser
beams. According to that model, the phase of a laser beam wanders appreciabl
aver time-intervals long compared to 3 relaxation time 1/, and rematns relath
ly fixed over time intervals whick are much shorter in length,

When the two laser beams are represented by such models, the light inlensit
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s'iectiod on the sc reen will depend on the length of time we require to make our
legsurements, I the intensities g sulficlently great that we can record them in
time short compared to 1/, then Lie fwo beams will relain nedrly the initial
slues of their phases whil~ the measurements are being made, a4 randomly situ-
‘#d Iringe pattern of the sort we have already discussed should then show up. PBut
similar measurement made, say, half relaxation time lajer would reveal a
iderently placed set of fringes, eorresponding to the fluctustion that had taken
Ace in the phase difference of the two beams,

U we could follow the fringe intensity as a function of time, we should see the
irallel {ringe system execute a gort of random wandering back and forth on the

H1 mean that the fringes Auctuate greatly in contrast ag wej} as in position, The
:laxation time for these variations will be the inverse frequency bandwidth of the
mrces. U such fringes have not been photographed to date, it is hecauge aX~
)sure times shorter than 107" sec. would be necessary.
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seture XVIH FHOTON COUNTING EXPERIMENTS

The number of photons which a counter records in any interval of time flucty-
es randomiy, Ina gimple type of counting experiment we might imagine that the
unter is exposed Lo the field for a fixed tnterval of time &, Then, by repeating
& experiment many times, we should find a diatribution function for the number
tounts recetved in that interval, Although the average number of counts ig fre-
ently all that we require, the way in which the number fluctuates about its aver-
e value can he fully understaod only when we know the distribution function and
i moments. In this lecture we shall discuss waya of predicting the distribution
nciion and the relation between the lorm of the distribution and the coherence of
g field,

Let us first recal some of the results we established in Lecture v, Wa cal.
fated tharn the probability that in an interval of time from tato t all n atoma of
hypotheticz] noatom photodetector underga phatoabsorption transitions which 2rs
alstered as phoion Counts. When we eliminata the tensor indiceg by assuming

2 fleld to he fully polarized, thig probability is glven by Eq. (5. B}, Le., we
ve

t ton
p(n)(g) .-;fo...fu ,--[--[i St -t G[“’(r;t,'---r,. taf, ‘l'nté""rzh") ¥

N oaty dipe, (17.1)
1=y

ere the sensitivity function § 12 defined by Eqs. (4.12) and {4, 10), ‘and we have

s

te= 0. If our detector huppens to be of the hroadband'variety, we may use Eq,
14} to reduce the number of thme integrations in this integral from 2 to n, but

P N A A PR LA 55'_4'_ s T s: N : ;WM;__..
e CAL e E R B Al FonoTaNsraTispes -~

SHOFMOUS number of atoms, say N~ 10°°  whic
by undergoing phctoai}snrption processes,
happen that all N of these atoms do undergo ;
interval of time, « The total number of photo,
and we shall try to use Eq, {17,
The total number ol photoco

{17.3)

Associated with each final state of the system i.e. » any sel of values z,.. rZy
there is 3 probability function Plz, ‘Zu, L), The slatistical average of any funcj-
tion of the Z4's ig then found by averaging the function over the probability distrj-
bution, For example, the average number of counts is glven by

N
<«&C>= ¥ ) 2y (212, 1), {17. 4

Pilz,t) =  § Plzivozyt),

h;,k =g

(17.5) -

L
I3

The average number of counts may be written in terms of (he reduced proba- i -

bilities p; ag

) N
<Co = Z E Zipzg, )

pt] =1 .
. {17.6)
=2 pit, 1)

I=1

The probabitity p, (1, 1) Wwhich oceurs in the lattep expression is cle
the one-aiom trangition prohability o(0(t) ayaluareqd for
bility is given by Eq. {17.1) for p = L withp, = ¢
(0, The average number of countg 1g thusg

arly equal to ;
the j-th atom, That probaul
¢y and we shall write it as

A
(1.1 i

the way In which

KOS was:.ab'tamed:,:,bi;tt_thep:_'eaentfmethdd has the édvaniage of enabling us to ob-

The generating function

QM) =<1 -3 C o



s C'ig the Tandom integer given by Eq. (17.3), the brackets indleate an en-
blé ayerag, -and the variable ) §§ tended strply tobe a waeful parameter.
If we writé Q a2 2 sum aver the integer valuea whick C may take on we have
expangion of the form :

il
Q) = L (1= X" p(m, 1),

ere p(im, t} is the probability that the counter has recorded m photocounts at
stime t. It is clear that 1 Q(X, t} is known p(m, t) can be obtained by differ-

iation,
p(m, 1 = E T € 00, I

mi x =1

(17.9)

{11.10)

ce Eq,{17,9) may be regarded as a Taylor expansion for ©Q about A = 1,
if, on the other hand, we expand Q{a, t} in a power series sbout A = 0 we have

H & £
At [d
ap, =Y [ ,\,z] 11.11)
( ! ) n:z; HT a‘xir Q{ ) . (
A=
e derivatives which occur in this expansion are given by
Ja ct
N o S I G
A =0 (17.12)

H

< C(C - I)abo'(c -n¥ 1} >,

& averages on the right of this equation are known as factorial moments, They
& simple linear combinations of the ordinary moments < C® > of the distribution
pholocounts, 1t is clear from these relations that a knowledge of the generating
wtion enables us to find both the probability distribution and its moments, We
18t next show how it is possibie to evaluate the generating function in terms of
+ photoabsorption probabilities pl®(t), :

First let us note that Q{A, t) can be wrilten as

QA = T Planazat) (1 =215

{z4}
(17.13)
= Zﬁ’(z;xr---zn;) ﬁ (1-n% , - o _
(%) P LR . ‘
'e latter form, hawever, may be simplified by using the identity
(1-M% =1-2;0 (17.14)

sich holds because z,; takes on only the values zero and one,
ration, Eq. (17,13) becomes

With this simpli«

QA 0= Y Pz .z b) ’f’i (1 -2z).
(e -t

hen the N-fold product in this expression ia'expanded In powers of A, we have
" o
C RN =) (L T

sx=0 {ry n-fald
# combinations

{17, 15)

Zgn By B2 2a, 1), . ‘-.'(.1;?:'\:__1_6}

R—" -

where the flrst sum is taken over all theﬂays of chéosin-g n atoms from the set of
N, ' .

It we now define the ni-foid joint probability that atems. .. j» all undergo
photoabsorption processes as : R

PO o (= 0 2oy Pz za), ‘ (17, 17)
{3} !
then we may write the generating function in the form
X b
QA = PN T P, (1), {17, 18)
Pt n-fokd combinatlans

Now the number plo}), ., 1, {t) has been deflned as the probability that each of a
particular set of n ptoms absorbs a vhoton, rsgardless of what all the other atoms
do. This probability is simply the expression p!¥(1) given by Tq. (17.1) angd rvaly.
ated for the particular atoms ji... ju. Hence we know all the terms of Eq, (17, 1%
and the problem is simply to sum them. What we shall o, in fact, is to turn the
sums over atoms into volume integrations,

Since the probabilities p!™(t) are only large for values of n which are extreme-
ly small in comparison with N, we may approximate the sums over n-lold combina-

tions by writing
1 W ] .
Rer L i .

n=isld combinationy LLLEE et B pet] ™1

{(17.19)

Then the sums over the individual atoms may be carried out as spatial integrations
by letting the number of atoms per unit volume be o{r} and writing

)

v = fdry o(m)... (17. 20)
=1 .

. ‘ HH
We are, in effect, dealing with the limit N— =, When the probabilities given by
Eq. (17.1) are substituted in the expression {17.18) for the generating function
and the sum over combinations of atoms is transformed as we have indlcated, we

{ind i - .t \
_Q{A" 0= -2=1 L:l—!k)— 'ft,‘_." ftn f\'ai-.,ol Detactar Vol. of Detector
G L R, TI A L g ) x (17.21)
ilia(l':')_ S(t.n" ~ t') dr, dt atye,
To abbreviate thié gx';s}résai_on"a Bit‘,‘ let us define the function *
‘V(x', X'} = o) 8(r - 1) 5(t7 - 1), (17, 22y

where x indicates both the position r and the time t. 'Then the expression for the
generating function reduces to

Qx, ) ;:L %—;‘—)———— f fG‘“}(x,'..-. X, %00t x

‘n

‘H V{x} x) d'xy dxpr, {17.23)
=i !

Since this i a power series expansion abouw A = 0, the factorial moments must be
given, according to Eqs. (7. 11} and (7.12), by

i




.<c""”“§?:“;""z“_:f..'. JGM 0 e, gy
: ) M {17.24)
’ OV (x) x,0) d‘x;'d‘x;“,
jmy

here the integrations are carried out over the sensitive volume of the counter and
& tin.einterval from 0 to t,

As vn iHlustralion of "he usefulness of thege results, let us -:onsider the tase of
fully ¢ sherent field, For such a fleld we have the factorizaticn

GOt Lty XM ) =‘ﬁ Gy, 2y, (17.25)
. @l
) that the series for Q(x, t, may be summed to the form

Q2 1) = e mvixeiacae

{17. 28)
dat from Eq. (17, 24) we see that the average number of counts is just
<C>= [ faVx, 0y viexr) g dixit; (17,27
» that the generating function may be written ag
QA, ) = et | (17.28)

W by using Fq. (17.12) we derivs the factorial moments

| < Cl - .
‘ eyl <C>t, (17,29)
d by using Eq, {17.10) we find that the probability distribution is

<o o <C>
mi

plm, t) = {17, 30)

&., when the Heid is fully coherent we alwaya have a Poisson distribution for the
mber of counts, )

. When the field does not posseas full coherence we can nevertheless use the
herent states as a basis for describing it, . To illustrate the form the statigticat
lculations take, we shall uge the P-representation for the density operator of

2 fleld. The R-represent'ation, whiélf applies more generally, can also be used
nilarly., In the P-representation G ' 15 given by the integral

G5k ) = [ P(lan)) UE ) x

2n
& (xlad}) Ndtan. (17,31}
P rtl k X

en this expression is substituted into the series (17.23) we find that the seriag
iy be summed to the closed form

QA 0 = [Plla)) e ad nd'a, | (17.32)
ere .
ofab = [67 0o fad) & (0t {a]) V(0 ¥ dddta, (17.33)

wthefmore we see from Eq. (17.12) that the factorlal moments are

oA el AN T Qb P
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10y
cl
Qc*af)_> ”_fp({m} }ﬂ“{iml){[dzak ) {17.34)
~and from Fq. (17.10) that the probability distribation s glven by
F-
p(m, 4 = fo(tan Tlla) ealingty, {17.35

quasiprobablility. function p may assume negative values. :

As.a further illustration of the methods we are diseussing let ug consider the
general case of g chaotically generated fleld, The density eperators of such fields
may be represented by means of the Gaussian function | -

. 1 . m,,i'-
Plla)) = 1 s ® a3 . ‘ (17, 36)

l"I‘he'n', j__a'i_m':a the function. {1 is a quadratic form in the variablea g, , it will
gible to evaluate the integral {17,382) for the generating function in fuil gen
Before we do this, howaver, let ua introduce aome useful notation,

presathe function g( xlect}) a8 alinear form in the variables g, by us
mode expansion G :

& {xtad) = Je(x, Ko, . (17.3%)

.
wherg the functions e are glven by Eq. (14.28). It we then define the matrix

be poa-

arality,
We may ax-~

ing the normal

Beww = [e*(xi) V{x'x®) e{x*k») d'x dhx, {17, 38)
‘We may write thé'qt_:adratlc_z_érm i as '
2ad) = T an’ Buran oyn, o (17.39)
UL ‘

‘When this ekpresélon for © and the Gaussian form for B are substituted in By,
(17.32) we find that the generating function is given by '

hl

= f s ‘_ |G i . * . ”l da
Q(Al t) f fexp{ ¥<nk> A l?jkn e Bk'k.“ [#1% if} pe—
If we then introduce the variables

B “Gt/((ﬂk))g {17.40)

and define the matrix
i 1
Mitar={ <ng>} 2 By o0 <y ?, (17, 41)
the integral for ﬂ_m_generéting function may be simplified to @:}ie form

QA t) = f---f_exp { 2]1311‘ -ak);“,é-u* Mytyn 3,;-,}11';3;@*_ C(17.42)

Now we can cansider the get of numbers p, as forming the compaonents of a
complex vector 8. Then if we let M repregent the matrix whose components are

given by Eq. (17. 41}, we may write the exponent In the integrand of Eq. (17.42)
as the product ‘ '

-at(1+am g,
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Since the Matrix M is Hermitian it may he diagonalized by carrying out a unitary
transformation upon the vector 8. Then if we lot the eigenvalues of M be @, and
iel the transformed complex coordinales be ¥4 the integral for the generating
“function reduces to the glementary form

a
f--»fexp{m E{ 1+)ﬁﬂ,)iy;i2}ﬂ 47
I £
1

= I}fi 1‘}\&”;5

H
T det {1+ aMy

i

QA 1)

(17. 43a)

(17. 43n)

It is worth noting that the matrix M must be posktive definite, since the guad-
ratic form 2 defined by Eqs. (17,33) or (17.39) i3 the average number of pholsng
counted in a particular coherent field. Hence the aigenvalues M, are positive,
and the singularities of the generating function lie an the negative real axis of the
variable M. Since Q Is analytic in the half-plane ReA = 0, we gee that i we are
given Q as a power series expansion about either of the pointg A= Oar A= 1, the
series expansion about the other of the pointa may be ¢valuated, in principle by
analytic continuation, This argument shows that the procedure we have been using,
of evaluating the generating function by means of its expansion about X = 0, actually
leads to a unique answer for the probabillty distribution,

Since the matrix M is in general of infinite rank, neither of the expressions
(17.43) is easy to evaluate directly. Let us note, however, that det {1 + AM) may
be wrilten as

N ‘
¥ E}(i+.\9ﬁ,) =exp\2}log(lﬁmﬂ,){ .

Now for |A]l <(Mma) ', where M., is the largest of the eigenvalues,, we may ex-~

pand the logarithm In the exponent ina convergent power geries. In this way we
see that
det (1+AM) = exp{z (am, -%a’rm,z +...)}
= exp {Tlr {lM - _12_‘le= +e09)
(117, 44)

= exp{ Tr log (1 + A M)}

where Tr, as always, stands for the trace.
express the generating function as

By making uge of this Identity we can

Q(k, 2) = g Triog{leng (17_45)

If we «xpand the logari hm in powers of X, we may write this function in the form

haid z
QA 1) = exp } T i?’i Lt (17, 46)
¥zl
where I is defined by
1. = Tr{M"}. (17.47)

If we recall the definition of the matrix M given by Eqs. (17.41) and (17.38),
then we see that for r = 1 we have :

.k - ' - o L - L £ e _,..«:#- :
" | [— H— e 8 : g . o f s w e

L= ff 7 e* (k) e(x* k) <n> V(x XY ' dhr,
. . k . ' .
The sum over k in the integrand,‘“ according to Bq, (14.32), is simply the first
order-corrvelation function. “The integral thus reduces to
L=fo (5 x) vz x) a'w d'e, (11, 48)
If we compare Eq. {17.46) with Eqs. (14.27) and (14.28) we see that this r = 1
term i3 of the same form as the exponent of the generating function for the case
of a pure coherent field. The lack of coherence for the Gaussian case is veflzcied
by the presence in the exponent of the additional terms with ¢ 2= I, Dy auihing
turther use of the matrix M we can show that the general expression for L i the
cyclie Integral .
¥
L= | n G R, xp®) Vit x ) d'x, dtx,n, e {17, 45)
Pt
in which the coordinate x4 is to be interpreted ag x,*. For the case of broad-

band detectors the definitjions (17.22) and (4.14) allow us to simplify this integral
to the form :

¢ '
I =g faL Taty f--“fllIG‘“(r.' tf, Tt tuf) @ {7) dr). {(117.50)

To discuss the evaluation of these integrals let us suppose that our counting
experiment has particulariy simple geometry. We shall assume that cur field
consists of plane waves travelling in the positive y-direction, so that the first order
correlation function is given by Eq, (15, 1). This function naturally depends anly
on the y-coéordinates of its spatial arguments, We next assume that the sensgitive
reglon of the counter, i.¢., its photocathode, 13 a very thin layer of atoms lying
in a plane perpendicular to the.y-axis, The function a(r}, in other words, la
essentially a deita function of the.y-coordinate. With these assumptions, which ex-
periments often approximate quite closely in practice, the spatial integrations in
Eq. (17.50) become trivial, The funetions G%are independent of their position
variables for all of the polnts for which a(ry differs from zera,

The time integrals in Eq. (17.50) are considerably less trivial, but we may
digcuss the forms they take for short tinies and for long times. If the time t is
much gmatler than the inverse frequency bandwidth of the radiation present, the
functions G will hardly vary at all in the interval from 0 to t. For such times
the Integral I must simply be proportional to t' , If we write . as wi, where w is
a proportionality constant; then the elementary character of the spatial integrations
shows that the general result must be

L= (w)'. (17.51)

When this result 1s substituted in Eq. (17, 48), we find tlat the generating function
for small values of t {s .

Q2 ) = exp {-log (1+ awt)}

1
“TeAwt

{17.52)
The probability distribution for the namber of counts is then given, according to Eq.
(17.10), by '
(w)"
{1+ wty=?

p(m, t} = - . (17.53)
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Fhe distribution for short times is thus glven by a power law not unlike the Planck
listribution. The mean number of counts ig wit, 8o that wis slmply the averags
wouriting rate,

For times t which considerably exceed the inverse bandwith of the radiation
leld, it is also possible to simplity the integrals L., In this case, however, their
ralues depend gensitively on the spectral distribution of the £nergy present in the

ield. T.et us therefore assume, as.an example, that the frequency apectrum has
he Loreniz form

_ congtant
<ne> Rwy = (o - wa)t a 37" {17.54)
‘he time dependence of the firat arder correlation function s then glven by Eq.
15.8). When this function is subatituted into the integral {17.50}, we see that,
wcause of the cyclical structure of the infegrand, all of the I, will increase linearly
vith tinie for t » 37!, Ve may again define the average countiug rate, w, by writ-

ng the .ntegral I as wi, Then it is not difficult to show that tas Iull set of integrals
+ may be written in the form

105 PR Y L _
ke=orzin Uy &) y (17.55)
ort»yt,
With these values for the I, it i3 possible to sum the serles in the exponent of

!q. {17.46) in closed form. When this ig done we find that the generating function
g

~ QA 0 = exp -[ (y*+ Zwnd -y (17.56)

When the counting rate w 'is small compared to the frequency bandwidth {1, e,
r<<y, then the expression in the exponent may be expanded, and we find that in the
owest approximation the generating function reducey to

QUA, 1) = edm, (17,57

*his function, as we have seen, leads to a Poisson distribution. It is the distribution
& would find if there were no tendency for the photons to arrive in correlated
unches, or for the field amplitude to fluchiate randomly.

To discuss the distribution and moements which follow frem the generating
anction {17.8 ), it ig useful to introduct the set of inverse polynomials

sa(f) =81 (t) = 1

82t} = 1 *‘é" ‘
{17.58)
sa(i) = 1o L)
54(5)=1+§+Z§-+;~? ]
‘he further members of the sequence are given by the recursion formaula
Saer (£} = ~ 8" (£) + ( 1+§E} an {£). (17.59)

‘hese polynomials are quite familiar in the theary of Bessel functions, They may
150 be calculated from the expression :

1
8. (£) = e“*(gf—) * Keera(8),. {117.60)
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where Ka-i/1 18 2 modified Hankel function of half-integral order.

U we now expand the generating function (17,56} in gz power series about A = 1
and examine ita coefficients we find that the probability of receiving m counts tn
time { is L

p(m, 1) = (B sa(ry) ere - (17.61)

where we have written

I=(y' + 2wk, , (17.62)

The diatribution {17, 81) has the same mean value, wt, as the Poisson distribution
which follows from the generating function (17.57), Is variance, however, is
always larger than that of the Polssaon distribution becauce of the photon clumping
effect. :

The power series expansion of the generating function (117, i6) about A= 0 ig

qan = 3 (2T o, o aney

a0

We conclude from this expansion that the factorial moments of the distribution
{17,61) are given by

<{§_?i§)"> = {wt)" Ba (vt}
L(C- 1 (C-n+1)>, R (17, 64)

For a Polsgon distribution these moments would ba gimply (wit}®. The firsi twe
of the moments (17, 64) are o

<C> =wt o (17, 85)
<C(C-1)> = (wi)* (1 ﬁ- ). o (17, 66)
The variance of the number of counts {s thus .‘ |
CC*>-<CH = <C> {1 +<—§2} ' (17, 67)

The tarm <C>* /yt Is the addition to the variance which is due to the fact that the
photon arrival timea are not statistically independent of ane another,




